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Modeling momentum and scalar transport in a wall-bounded turbulent flow
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ABSTRACT
A mildly-heated turbulent boundary layer was studied to char-

acterize the relationship between velocity structures and the scalar
field. Particle image velocimetry (PIV) and a Malley probe (Malley
et al., 1992) were used to simultaneously measure the velocity field
and the streamwise gradients of the scalar field (Gordeyev et al.,
2014) respectively. Two distinct velocity scales were identified to
be correlated to scalar mixing by conditionally averaging the veloc-
ity field on the existence of a scalar gradient. Resolvent analysis
was used to create simple models of these velocity scales (McKeon
& Sharma, 2010) and to probe their interaction. Using a combina-
tion of structural conditional averaging and conditional averaging
on the scalar gradient, significant interaction was observed between
the two scales of interest, with behavior consistent with the gen-
eral scale interaction described by amplitude modulation (Hutchins
& Marusic, 2007). The study constructed a model of the velocity
field that was correlated to streamwise scalar gradients in the outer
boundary layer.

INTRODUCTION
The relationship between the scalar field and the velocity field

in wall-bounded turbulent flows has been studied for decades. Chen
& Blackwelder (1978) used the temperature field of a turbulent
boundary layer developing over a heated wall to identify sharp shear
layers on the backs of large-scale bulges. These sharp shear layers
were found to spatially coincide with sharp changes in the tempera-
ture field, suggesting significant correlation between the streamwise
velocity field and the scalar field in the outer boundary layer. For
flows with Prandtl number near unity, the velocity and scalar fields
have been statistically related using the Strong Reynolds Analogy
and extended Strong Reynolds Analogy, the latter of which has al-
lowed for good estimates of the scalar field in compressible flows
with Mach number up to 3 (Wyckham & Smits, 2009; Gordeyev
et al., 2014). Instantaneous relationships between the velocity and
scalar fields have recently been studied in more detail by Antonia
et al. (2009). They observed strong similarity between the stream-
wise velocity field and the scalar field near the wall, which is consis-
tent with usual approximations of their relationship. However, far
from the wall, significant differences between the scalar and stream-
wise velocity fields were observed, even for a flow with Prandtl
number near one (0.7) and canonical conditions. In this region of
the flow the best match to the scalar field instantaneously and sta-
tistically was found to be q where q2 ≡ u2 +v2 +w2 and u, v, and w
are the fluctuating streamwise, wall-normal and spanwise velocity
fields. Even choosing q as the basis of comparison, the correlation
coefficient between instantaneous snapshots of the fluctuating tem-
perature field squared and q2 was only 0.35, indicating that there
are complex relationships between these two fields that are not yet
well characterized.

The interaction between scales in the velocity field is also an
area of current study. Hutchins & Marusic (2007) demonstrated
that very large scale structures in the streamwise velocity field were

correlated to a modulation in the strength of small scale velocity
structures in the flow. The effect spanned the full height of the
boundary layer, but showed different behaviors at different heights.
Small scales were shown to be strongest away from the wall in
the presence of a negative large scale streamwise velocity feature
and strongest near the wall in the presence of a positive large scale
streamwise velocity feature (Mathis et al., 2009). This correla-
tion was interpreted as a measure of the phase lag between large
and small scales throughout the boundary layer (Jacobi & McKeon,
2013).

This study aimed to improve the understanding of the structural
relationships between the scalar and velocity fields in the outer re-
gion of turbulent wall-bounded flows. First, conditional averaging
techniques were used to identify velocity structures that were cor-
related to streamwise scalar gradients in a mildly-heated turbulent
boundary layer. Two distinct velocity scales were observed, and
the interaction of the two scales was investigated using novel condi-
tional averaging and modeling techniques. The individual velocity
scales and their interactions were modeled using resolvent analy-
sis, and the possibility of ultimately modeling the scalar field was
discussed.

EXPERIMENTAL METHODS
Experiments were carried out in the Merrill wind tunnel at Cal-

tech, an incompressible flow facility with a 0.6 m x 0.6 m text sec-
tion. A turbulent boundary layer was tripped at the leading edge of a
flat plate. Heating elements were embedded in the flat plate over its
full span and over a total of 36δ in the streamwise direction, broken
into two 18δ sections with a 4δ unheated length between them. The
heated portion of the plate started 9δ downstream of the boundary
layer trip and ended 6δ before the measurement location. The inter-
nal cool layer that developed after the end of the heated section was
found to extend up to about 0.1δ in the wall-normal direction at the
measurement location. As this paper focuses on the outer region of
the boundary layer, this inner cool region is not of interest. Figure
1a shows a schematic of the PIV and Malley probe measurements
in the heated turbulent boundary layer, not to scale.

The temperature difference between the free stream and plate
was held constant at 20C such that the flow was moderately heated,
with no change observed in the statistics of the velocity field from
the addition of the scalar. Simultaneous observations of the scalar
and velocity fields were conducted, with a Reτ of 910, Reθ of 3300,
and a Prandtl number of 0.7. The 99% boundary layer thickness
was 35 mm.

Velocity measurement
The velocity field was measured using particle image ve-

locimetry (PIV) in the wall-normal streamwise plane. The flow
was seeded with an aerosol of bis(2-ethylhexyl)sebacate (DEHS)
with a 0.25 µm modal size using the LaVision Aerosol Genera-
tor #1108926, and illuminated using a double-pulsed YAG laser.
A Photron camera imaged the flow field at a frame rate of 1500 Hz
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with a field of view of 1.7 δ x 1.6 δ (60 mm x 55 mm). Velocity vec-
tors were calculated from the images using the DaVis software from
Lavision. A double-pass approach was used with window sizes of
32 and then 16 pixels. The final resolution of the vector field was
0.013 δ or 14.5 inner units in both the streamwise and wall-normal
coordinates. Statistics of the velocity field were found to agree with
data from DeGraaff & Eaton (2000) above a wall-normal height of
0.04δ or 40 inner units. Below that height glare from the wall pre-
vented the accurate measurement of the velocity field.

Scalar measurement
The scalar field was measured using an aero-optic device called

a Malley probe (Malley et al., 1992). The Malley probe consists of
a laser beam (1 mm diameter) that is passed through a flow be-
fore ultimately impinging on a position sensor that measures the
beam’s centroid position. The final angle of the beam is then de-
duced from its centroid position, schematically illustrated in figure
1b. The beam angle is found to be time varying when the beam
is passed through a variable-density flow, due to a relationship be-
tween index of refraction and density (Gordeyev et al., 2014). In
air, the index of refraction is in general a function of time and space,
n(x,y,z, t) = 1+KGDρ(x,y,z, t), where KGD is the Gladstone-Dale
constant and ρ is the density field. In this study, the Malley probe is
used to study a very low Mach number flow (M = 0.05) with heat
addition, such that the only source of density fluctuations comes
from the heated flat plate (Gordeyev et al., 2015). The beam is
passed through the flow in the wall-normal direction and the stream-
wise angle of the beam is measured. The streamwise beam angle,
θ , is a measure of the integral of streamwise gradients in the scalar
field. Note that in the schematic in figure 1b the streamwise den-
sity gradient is simply represented using a single ‘interface’ in the
density field, illustrated using a dark red inclined line.

sin(θ(t)) = sin(θi)+
KGD

1+KGDρa

∫
ζ f

ζi

∂ρ

∂x

√
ẋ′2 + ẏ′2 + ż′2dζ (1)

where θi is the incoming angle of the beam relative to the vertical,
x′, y′, z′ are the coordinates of the beam in space as a function of the
beam path parameterization coordinate ζ , and ρa is the ambient air
density. Assuming small angles and standard ambient conditions,
this can be approximated as

θ(t)≈ KGD

∫ y f

yi

∂ρ

∂x
(x0,y,z0, t)dy (2)

where x0 and z0 are the streamwise and spanwise locations of the
incoming beam.

MODELING METHODS
The wall-normal coherence of specific velocity scales was

modeled using resolvent analysis for a boundary layer geometry
with a parallel flow assumption (Jacobi & McKeon, 2011). Re-
solvent analyses formulate the Navier-Stokes equations as an input-
output system where the linear dynamics act as a transfer function
between some input and the velocity field. The transfer function is
termed the resolvent operator. Fourier transforms were performed
in the streamwise, spanwise, and temporal variables to isolate the
wall-normal structure of the velocity field as the output of the input-
output system. The resolvent operator can be decomposed in a
singular value decomposition to determine the right and left sin-
gular vectors for each wavenumber triplet (streamwise, spanwise,

and temporal). The operator was found to be low rank (McKeon
& Sharma, 2010) such that the first left singular vector could be
used as an approximation for coherence of the velocity scale. The
model for a given scale, defined using its wavenumber triplet, is the
first left singular value at that scale with an amplitude set through
comparison to PIV data.

IDENTIFYING INDIVIDUAL VELOCITY SCALES
Conditional Averaging

The study aimed to identify structures in the velocity field that
were most correlated to scalar mixing. To do this, the Malley probe
signal was used as a condition upon which the velocity field was
averaged, essentially using the density field as a marker for turbu-
lent structure. The velocity field was conditionally averaged on
θ < −0.5σ where σ is the standard deviation of θ(t), isolating
velocity structures that appeared simultaneously with moderately-
large negative streamwise gradients of density at any height in
the flow. Figure 2a shows the conditionally averaged fluctuating
streamwise velocity field, < u > /U∞, where <> indicates con-
ditional averaging. A feature can be observed that is over 1δ in
width. This feature is hypothesized to be the same type of bulge
that was observed by Chen & Blackwelder (1978). Figure 2b shows
the conditionally averaged wall-normal velocity field < v > /U∞,
where small-scale features are observed (Saxton-Fox et al., 2015).
These features are found to have a streamwise length scale of ap-
proximately 0.2δ , with a height that spans the entire height of the
boundary layer.

That organized structures were observed in the conditionally
averaged velocity fields has two implications. The first is that there
is some strong relationship between the organization of the scalar
field and velocity structures in both the streamwise and wall-normal
velocity fields. The second is that the Malley probe signal at a
given instant in time is likely dominated by a single event, a local-
ized streamwise density gradient, rather than reflecting an average
of multiple events in the flow.

Modeling
Resolvent analysis was used to model the wall-normal coher-

ence of the two scales in figures 2a and b. The feature in the
streamwise velocity field was estimated as having a wavelength of
4δ based upon the structure observed in figure 2a, characteristics
of bulges from Kovasznay et al. (1970), and statistical features of
large scale motions described by Monty et al. (2009). The span-
wise coherence was estimated as 1δ from the work of Kovasznay
et al. (1970). The second scale was estimated as having a stream-
wise wavelength of 0.2δ from the structure identified in figure 2b.
Its spanwise wavelength was unknown but was estimated as 0.2δ .
A convection velocity for both of these structures of 0.8U∞ was
selected based upon previous work on the convection velocity of
structures that dominate the Malley probe signal in the heated tur-
bulent boundary layer (Saxton-Fox et al., 2015). Figure 3a shows a
streamwise – wall-normal cut of the model for the large scale mo-
tion observed in the streamwise conditional average, while figure
3b shows a streamwise – wall-normal cut of the model of the wall-
normal velocity feature. Note that the wall-normal model in par-
ticular is significantly more compact in the wall-normal direction
than the conditional averaging result. This discrepancy is explored
in further sections.

VELOCITY SCALE INTERACTION
Conditional Averaging

The interaction of the two scales shown in figure 2 was inves-
tigated under the hypothesis that, if both scales are correlated to
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(a) (b)

Figure 1: Schematic of the (a) the PIV and Malley probe simultaneous measurements in a heated, turbulent boundary layer and
(b) a simplified representation of the Malley probe optical measurement.

(a) (b)

Figure 2: Conditional averages of (a) the streamwise velocity fluctuations < u >/U∞ and (b) the wall-normal velocity fluctuations
< v > /U∞ given θ <−0.5σ , corresponding to a moderately-large negative streamwise gradient of density along the line x = 0.

large streamwise density gradients, perhaps their interaction is rel-
evant to the organization of the scalar field. A modified conditional
averaging technique comprised of two unique conditions is used to
investigate scale interaction and its relevance to scalar mixing. The
first condition was the same as that used to conditionally average to
find individual velocity scales: θ <−0.5σ . This condition imposed
the requirement of a moderately large negative streamwise density
gradient. The second condition was that the large scale streamwise
structure, modeled in figure 3a, was clearly observable in the in-
stantaneous PIV frame. This condition was achieved using a pro-
jection technique. The velocity field was projected onto the resol-
vent mode and was averaged only if the projection coefficient was
above a threshold (in this case, 0.4). Note that because the field
of view available in the PIV data was less than the wavelength of
the mode, the velocity field was projected onto the mode at eight
distinct phases and then stitched together in post-processing.

The wall-normal velocity field was filtered with a Gaussian fil-
ter with standard deviation 1δ to obtain the small scale features,
vss. Figure 4 shows a compilation of eight conditionally averaged
fields of (a) the streamwise velocity field and (b) the small scale
wall-normal velocity field using the modified conditional averaging
technique. The black line in figures 4a and b represents an isocon-
tour of the conditionally averaged streamwise velocity field in the
laboratory frame < u >+Ū = 0.8U∞ where Ū is the mean stream-

wise velocity field. Note that 0.8U∞ is estimated to be the phase
speed of both structures and was used to create the models in fig-
ures 3a and b.

The coherent regions of wall-normal velocity in figure 4b are
observed to appear at different heights relative to the wall as a func-
tion of the phase of the large scale. In particular, the height of the
coherent regions of wall-normal velocity appears to follow the lo-
cation of the isocontour of the streamwise velocity field. This spe-
cific relationship between the two scales in the flow agrees with the
trends between all large and small scales that were identified by
Hutchins & Marusic (2007).

Note that compared to the structure in figure 2b, the wall-
normal velocity structures in figure 4b are significantly more com-
pact in the wall-normal direction and sit at a particular height in
the flow. Their height relative to the large scale structure places
them coincident with strong shear layers in the velocity field. The
localization of the small scale coherence in v on the strong shear
layer suggests that it may be the interaction between a gradient in
u and a gradient in v that is ultimately most correlated to strong
gradients in the density field. The overlap of the u and v gradients
also strengthens the hypothesis that a single strong gradient event
is dominating the Malley probe signal, allowing the integral mea-
surement to behave similarly to a point measurement. The large
wall-normal extent of the structure observed in figure 2b is hypoth-
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(a)

(b)

Figure 3: Models of (a) the streamwise and (b) the wall-normal velocity structures observed in figure 2, shown in the wall-normal
– streamwise plane. Resolvent analysis is used to identify the wall-normal coherence of the models. The black line in (a) indicates
u+Ū = 0.8U∞ where u is the streamwise fluctuating velocity field of the resolvent mode, while in (b) it indicates Ū = 0.8U∞.

(a)

(b)

Figure 4: Conditional averages of (a) the streamwise velocity field < u > /U∞ and (b) the small scale wall-normal velocity field
< vss > /U∞ given two conditions. The first condition is θ <−0.5σ at a particular x location. The second is that the projection of
the streamwise velocity field onto the model shown in figure 3a is sufficiently strong, quantified by a projection coefficient larger
than 0.4. The projection and conditional averaging are done over eight phases of the resolvent model, as the field of view of the
data is less than the streamwise wavelength of the structure. The eight panels are shown stitched together, such that the strong
scalar gradients occur at x/δ locations between 0.25 and 3.75 in increments of 0.5. The black line in both (a) and (b) represents
< u >+Ū = 0.8U∞.

esized to be the result of averaging the compact structures observed
in figure 4b at their different heights in the boundary layer, effec-
tively smearing the small scale in y. Additionally, the compactness

of the small scale v coherence suggests that the resolvent model in
figure 2b is a reasonable approximation of the instantaneous struc-
ture. This resolvent model will be used further in investigating the
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observed scale interactions.

Modeling
The scale interaction shown in figure 4b was modeled us-

ing multiple resolvent modes and phase information derived from
amplitude modulation observations (Mathis et al., 2009; Jacobi &
McKeon, 2013). A total of eleven resolvent modes were used, with
a total of three values of kx and kz. The modes consisted of five
‘triads’, sets of modes in which two of the wavenumbers sum to
the third. All five triads consist of the same large scale, called
mode 1, with kx = π/2 and kz = 2π (the mode shown in figure
3a). Each triad’s mode 2 has spatial wavenumbers kx,kz = 10π

(the same values as figure 3b), and each triad’s mode 3 has spa-
tial wavenumbers kx = 9.5π and kz = 8π . The distinction between
the five triads comes from the temporal wavenumbers, ω , of modes
2 and 3. The phase speed, c, of the mode 2 was set to range from
0.76U∞ to 0.84U∞ in increments of 0.02U∞. This set the temporal
wavenumbers of mode 2 through the relation ω = ckx. The temporal
wavenumbers of mode 3 were set such that ω3 = ω2−ω1.

Figure 5b shows the wall-normal velocity field that is the result
of the superposition of the ten small scale modes: mode 2 and 3 at
each of the five temporal wavenumbers. One observes that mode
2 and mode 3 beat in phase with mode 1, shown for reference in
figure 5a. Figure 5b will stay coherent in time because, though the
individual small scale modes have differing phase speeds, the sum
of mode 2 and mode 3 beat with an envelope that has the same phase
speed as mode 1.

The favorable agreement between figure 4b and figure 5b sup-
ports the use of figure 5 as a model for the velocity structure that is
most correlated to strong streamwise density gradients. This veloc-
ity structure is composed of two unique scales with important dy-
namics in both streamwise and wall-normal velocity components,
with interactions that seem to be linked to the scalar field behavior.

DISCUSSION AND CONCLUSIONS
The instantaneous relationship between the scalar field and the

velocity field, even in passive scalar transport systems with Prandtl
numbers near unity, is rich and complex. This study identifies two
distinct scales in the streamwise and wall-normal velocity fields
that are correlated to scalar gradients, and identifies a specific scale
interaction phenomenon that is related to the scalar transport. A
model is proposed to represent the full velocity structure that is most
correlated to the streamwise scalar gradient in the outer boundary
layer. This velocity structure is composed of the two velocity scales
that interact in ways that are consistent with descriptions of ampli-
tude modulation (Hutchins & Marusic, 2007).

The exact form of the scalar field that is correlated to the mod-
eled velocity field has not yet been identified. However, some hy-
potheses can be made. From the work of Chen & Blackwelder
(1978), in flows with Prandtl number near unity strong velocity gra-
dients are known to spatially coincide with strong scalar gradients.
Thus, one can expect that the strong shear layer that exists along the
isocontour shown in black in figures 4 and 5 coupled with the strong
velocity gradient associated with the alternating signed v regions is
likely coincident with a large scalar gradient. Accurately model-
ing this large scalar gradient as a function of the velocity field is
a subject of future work. Additionally, from the work of Antonia
et al. (2009) one can hypothesize that the structure of the temper-
ature field may be similar to some combination of the streamwise

and wall-normal velocity fields identified in this work. Future work
aims to create a model of the scalar field that is compatible with the
velocity field model of figure 5 to shed light on the instantaneous
structural relationships between the two fields.
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(a)

(b)

Figure 5: The interaction of the large and small scale velocity structure, shown in figure 4b, is modeled using eleven resolvent
modes. The model of the large scale streamwise velocity mode is shown in (a) for reference. (b) represents the superposition
of ten small scale wall-normal resolvent modes, with phases set from amplitude modulation statistics (Mathis et al., 2009).The
black line indicates u+Ū = 0.8U∞ where u is the fluctuating streamwise velocity field shown in (a). Note that 0.8U∞ is the phase
speed of the mode shown in (a).
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